Showing posts with label energy. Show all posts
Showing posts with label energy. Show all posts

Friday, 6 January 2012

Alternatives to Meat? Watch this!

Video from the infamous One Show! Please Watch!!


This video sums up the arguments for and against meat alternatives. It is an easy and fun watch... in fact I remember watching this when it first aired on tv... how sad am I!?!?!

Next up... a reply to another comment! I would love to see more! :D

And remember, if we can send a man to the moon any thing is possible, even reducing our consumption!

Saturday, 3 December 2011

To eat or not to eat meat… That is the question! Part 1: is it all demand?


When people debate the issue around livestock and the negatives of increasing production of meat and livestock associated products many say we should reduce meat consumption.

REALLY?!?

Now sure, one way we COULD reduce emissions from livestock is to cut down on our sausages, chicken legs and kebabs; after all, less cows and sheep farting, less direct methane emissions. But there are other issues around more animals on the planet that feed our hunger for meat. This paper by McApline et al. 2009 looks at environmental degradation in Colombia, Brazil and Australia due to expanding beef production and the deforestation it causes.

A big issue around emissions from livestock is the fact that there are large indirect GHG emissions from forest clearance and land use changes. The paper looks at factors that have increased beef production and surprisingly, in some countries like Brazil, it is not supply and demand which dictate beef production and emissions; its land prices. Land policy in Brazil has made it more profitable to clear once natural rainforest and keep it clear than let it be. The cheapest way to keep vegetation from establishing again is to regularly cut regrowth… cows are surprisingly good at turning grass into milk, meat, leather and other useful products for human consumption. This not only has a dramatic effect on local ecosystem services and physiography; the global consequences include depletion of the capacity for natural carbon sequestration.

Meat is big business. Curtailing meat production will directly affect the economies which rely mainly on agriculture and the primary sector. This is a controversial topic as if a country is able to utilise its natural resources within its territory for economic means and development ‘at the expense’ of the environment, who are we to judge? We chopped down our ‘oak’ forests centuries ago to fight wars with continental Europe. With the specific driver of meat production in this context being land management, economical profitability and natural lawn mowers; there is an assumption that if the main driver of livestock (beef) expansion being the one stated, then whether you eat the meat or not, there still will be emissions from it, albeit highly inefficient per capita of digestion. In the case of Australia, land management reform in the favour of protecting old growth forests has reduced the profitability in expanding cheap, subsidised (through tax incentives) cattle ranches. This protection has worked, again regardless of whether Sheila or Russell eat steak or love veggie burgers.

However, with all business, it is fundamentally based on a market; therefore demand. If demand for meat (whatever the reason) decreases; then production and emissions would – economically speaking – decrease too.

I will explore more arguments around decreasing dependence on livestock as a food source. However, I am guessing it isn’t as straight forward as I think it’s going to be!

Wednesday, 2 November 2011

Contributions to global GHG emissions in a flow chart!

This flow diagram shows global GHG emissions from different sectors including agriculture; each sector is then divided up into end use/activity which produce GHGs, in this case 'livestock and manure' which is accountable for 5.1% of total GHG emissions directly (i.e farting); not including indirect forms of emissions from deforestation, feed or indeed energy used in their transportation (this is a separate flow).


From this image it is easy to see where the largest cuts in emissions could be from energy generation, especially when considering we have alternatives to conventional (but deadly) fossil fuel combustion.

Tuesday, 25 October 2011

So what is the problem with excessive farting (also burping, urinating and excreting)?



Why is it even an issue worth discussing in a blog dedicated to the world of excrement? Well the fundamental problem we face, not just as a species, but as inhabitants of earth, is climate change. We humans use the planet as our only home, kitchen, garden and toilet. Like any other confined space, when you begin to change the chemical make-up of the gas enclosed in that volume, you begin to change the overall physical, chemical and thermal properties of that gas. In the case of excrement, methane (CH4) and nitrous oxide (N2O) is produced through a variety of processes (as is carbon dioxide, CO2) which contribute to the greenhouse effect (Popp et al., 2010). Carbon dioxide is the most significant anthropogenic produced GHG due to the sheer quantity that is emitted into the atmosphere from human activities.  

However, as I touched upon in the previous post, over 100 years, the same amounts CO2, CH4, and N2O have varying potencies due to their thermodynamic properties. This property is applied as a ration of heat trapped by one unit mass of the GHG compared to one unit mass of CO2; this is called the Global Warming Potential (GWP) (Pitesky et al., 2009). As it a ratio, CO2 has a GWP of 1; CH4 has a GWP of 23 (in the previous post I wrote that the potency of methane was 20 times that of carbon, it was wrong sorry!); N2O is 296 (FAO, 2006). From this data, it shows how important methane and nitrous oxide produced from livestock production, and in particular from poo, will be an increasing problem, not just as the total number of GHGs (CO2 and non-CO2) is set to increase from projected and modelled figures (Popp et al., 2010). In addition, with populations estimated to reach 9 billion by 2055 (World Bank, 2011) and increasing qualities of life reflecting greater demand for meat in the diet; livestock rearing is set to increase; that equates to a whole load of shhhhh… excrement.

The United Nations Food and Agriculture Organisation (FAO) commissioned a report on the impact livestock production has on the planet,Livestock’s long shadow (FAO, 2006). As a whole, livestock (either directly or indirectly) is responsible for 18% of total anthropogenic GHG emissions (FAO, 2006); those figures broken down into individual GHG include:


·  Carbon dioxide (CO2) 9% of global anthropogenic emissions.
·  Methane (CH4) 35 – 40% of global anthropogenic emissions.
·  Nitrous oxide (N2O) 65% of global anthropogenic emissions.
·  Ammonia (NH3) 64% of global anthropogenic emissions.

However, as I will investigate later on in the blog (or further towards the top of the blog), Excretion and everything  does not just play an integral role to GHG emissions, it also plays a vital role in the nutrient cycle, particularly phosphorous and nitrogen. Phosphorous (P), as well as nitrogen (N) in the form of nitrates and other vital macronutrients like magnesium (Mg), potassium (K) and calcium (Ca) are required as well as a variety of other micro nutrients (Robinson, 2004). Phosphorous is often a limiting factor in plant production, due to its vital role as an ingredient in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), the building blocks of life; and in the Adenine triphosphate (ATP) which is the primary method of intracellular energy release and storage (Biology-Online, 2011), so we can all move, keep warm and most importantly… LIVE! Also, specifically to plants, P is necessary for healthy root growth, vital for the uptake of water and the other nutrients. The role fertiliser plays is significant, and indeed focusing on one of the nutrients, phosphorous, an increasingly important point has surfaced. Livestock (cows for example) need to eat; feed is created from plants; high amounts of land and biomass is required to produce vast amounts of feed; limited land resources dictates more intensive farming methods; greater dependence on higher yields; synthetic fertilisers created to provide the vital nutrients for plant growth; mining of phosphates from a finite source requires large amounts of energy whilst depleting the source.

As you can see, just from scratching the surface, cow (and other animals’) farts and poo pose a more serious problem than the humorous connotations applied to them suggest. Over the next few weeks and posts I hope to show you a greater insight in to the world of climate change, nutrients (re)cycling, pollution, eutrophication, renewable energy and many, many more uses, and subjects, which poo influences.

This blog may overlap with others, in fact it will. A post by fellow GEOG3057 blogger Emma (I hope she is Ok with me using her name), touches on the renewable potential of methane gas from… well cow farts. Another blog dedicated to the debate around biofuels can also shed light on the increasing diversification of energy sources, by another fellow GEOG3057 blogger Yulia. But those topics are for another time!

Next I hope to give you an insight into past methane releases and the relationships between the potent GHG and the atmosphere, looking at palaeo records of methane…essentially fossilised cow farts… Ok well some of the methane was produced by pre-modern time cows farting. Until then… watch those deadly emissions!

References:

Biology Online, 2011, ATP Definition. Available from: http://www.biology-online.org/dictionary/Atp. [Online] accessed 24/10/2011.


Pitesky, M. E., Stackhouse, K. R. and Mitloehner, F. M. 2009, Clearing the Air: Livestock’s contribution to climate change, Advances in Agronomy, 103, 1-40 pp.

Popp, A., Lotze-Campen, H., Bodirsky, B., 2010, Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Global Environmental Change, 20, 451-462 pp.

Robinson, G. 2004, Geographies of Agriculture: Globalisation, restructuring and sustainability. Harlow: Pearson Publications Limited.


If you find this sh.... stuff interesting then you might find these blogs interesting to! 

Please check them out, as I try to myself!

Agriculture: Human Health and Earth Health: http://robs-agriculture.blogspot.com/ 

Biofuels: Way Ahead or Blind Alley: http://biofuels-wayaheadorblindalley.blogspot.com/


Friday, 14 October 2011

Welcome!

Welcome!

This blog is to inform, amaze, inspire and of course explain the many uses of poo… Now please do not adjust your screens or refresh the page, I did just write poo.

Before we indulge ourselves in the wonders of excretion, understanding of the past is vital to analysing potential solutions of present problems for the future. In this context, methane (CH4) is a significant greenhouse gas (GHG), 20 times more potent than carbon dioxide (CO2) and one way that it is emitted is in the form of cow (and other animal) farts, and the anaerobic decomposition of organic materials, like manure. 

But before all of that! Here is a video that makes light of the fundamental argument that I am making.

Enjoy and I will post again soon!